Stress Less platform Help

StressLess Android Application Architecture

Using SpeechBrain ECAPA-TDNN as Primary Engine

Executive Summary

This document presents a comprehensive Android application architecture for StressLess, leveraging SpeechBrain ECAPA-TDNN as the primary voice analysis engine. The architecture emphasizes NPU acceleration, offline-first operation, and privacy-by-design principles while delivering sub-3-second stress analysis performance.

Core Architecture Overview

High-Level System Design

StressLess Android Application ArchitecturePresentation LayerBusiness Logic LayerAI/ML Processing LayerData LayerSystem IntegrationVoice Recording UI(Jetpack Compose)Stress Dashboard(Real-time Charts)Settings & Privacy(GDPR Controls)Wellness Coach Chat(AI Assistant)Stress Analysis Manager(Orchestrator)Audio Processing Pipeline(Real-time)Privacy Controller(GDPR Compliance)Wellness Recommendation EngineECAPA-TDNN Engine(Primary)LiteRT NPU Delegate(Qualcomm/MediaTek)Gemma-3n Insights(Secondary)Audio Feature Extractor(MFCC/Spectral)Encrypted SQLite(SQLCipher)Secure Key Storage(Android Keystore)Audio Buffer Pool(Memory Management)Model Cache(LiteRT Models)NPU Hardware Abstraction(HAL)Audio System Interface(OpenSL ES)Background Processing(WorkManager)Network Sync Service(Optional)Start/Stop RecordingGet Stress DataPrivacy ControlsAI RecommendationsProcess AudioExtract FeaturesVoice AnalysisNPU AccelerationGenerate InsightsLoad ModelsLoad LLMStore ResultsEncryption KeysHardware AccessAudio CaptureSync TasksCloud Sync

Layer 1: Presentation Layer (Jetpack Compose)

Core UI Components

1. Voice Recording Interface

@Composable fun VoiceRecordingScreen( viewModel: StressAnalysisViewModel = hiltViewModel() ) { val uiState by viewModel.uiState.collectAsState() val context = LocalContext.current Column( modifier = Modifier.fillMaxSize(), horizontalAlignment = Alignment.CenterHorizontally ) { // Real-time voice visualization VoiceVisualizationCard( isRecording = uiState.isRecording, audioLevel = uiState.currentAudioLevel, modifier = Modifier .fillMaxWidth() .height(200.dp) .padding(16.dp) ) // NPU status indicator NPUStatusIndicator( isNPUAvailable = uiState.isNPUAvailable, processingMode = uiState.processingMode ) // Recording controls RecordingControlButton( isRecording = uiState.isRecording, onClick = { if (uiState.isRecording) { viewModel.stopRecording() } else { viewModel.startRecording() } }, modifier = Modifier .size(120.dp) .padding(24.dp) ) // Analysis progress if (uiState.isAnalyzing) { StressAnalysisProgress( progress = uiState.analysisProgress, estimatedTimeRemaining = uiState.estimatedTime ) } // Results display uiState.stressResult?.let { result -> StressResultCard( stressLevel = result.level, confidence = result.confidence, recommendations = result.recommendations, processingTime = result.processingTimeMs ) } } }

2. Real-time Stress Dashboard

@Composable fun StressDashboard( viewModel: DashboardViewModel = hiltViewModel() ) { val stressData by viewModel.stressData.collectAsState() val insights by viewModel.aiInsights.collectAsState() LazyColumn { item { // Current stress status CurrentStressCard( currentLevel = stressData.currentStressLevel, trend = stressData.trend, lastAssessment = stressData.lastAssessmentTime ) } item { // Weekly stress pattern chart StressPatternChart( data = stressData.weeklyPattern, modifier = Modifier .fillMaxWidth() .height(200.dp) .padding(16.dp) ) } item { // AI-powered insights from Gemma-3n if (insights.isNotEmpty()) { AIInsightsCard( insights = insights, onInsightClick = viewModel::onInsightClicked ) } } item { // Privacy status indicator PrivacyStatusCard( dataProcessedLocally = stressData.localProcessingCount, dataSharedCount = stressData.sharedDataCount ) } } }

3. Privacy & GDPR Controls

@Composable fun PrivacySettingsScreen( viewModel: PrivacyViewModel = hiltViewModel() ) { val privacyState by viewModel.privacyState.collectAsState() Column( modifier = Modifier .fillMaxSize() .padding(16.dp) ) { // GDPR consent management GDPRConsentSection( consentStatus = privacyState.consentStatus, onConsentChange = viewModel::updateConsent ) // Data processing transparency DataProcessingCard( localProcessingEnabled = privacyState.localProcessingOnly, dataRetentionDays = privacyState.dataRetentionDays, onSettingChange = viewModel::updateDataSettings ) // Export personal data (GDPR Article 15) ExportDataSection( onExportRequest = viewModel::requestDataExport, exportStatus = privacyState.exportStatus ) // Delete all data (GDPR Article 17) DeleteDataSection( onDeleteRequest = viewModel::requestDataDeletion, deletionStatus = privacyState.deletionStatus ) } }

Layer 2: Business Logic Layer

Stress Analysis Manager (Orchestrator)

@Singleton class StressAnalysisManager @Inject constructor( private val ecapaEngine: ECAPAStressEngine, private val audioProcessor: AudioProcessingPipeline, private val privacyController: PrivacyController, private val wellnessEngine: WellnessRecommendationEngine, private val localRepository: LocalStressRepository ) { suspend fun performStressAnalysis( audioData: ByteArray, context: StressAnalysisContext ): StressAnalysisResult = withContext(Dispatchers.Default) { // 1. Privacy compliance check privacyController.validateAnalysisPermissions(context) // 2. Audio preprocessing val processedAudio = audioProcessor.preprocessAudio(audioData) // 3. Feature extraction val features = audioProcessor.extractMFCCFeatures(processedAudio) // 4. ECAPA-TDNN stress analysis (NPU accelerated) val stressEmbeddings = ecapaEngine.extractStressEmbeddings(features) val stressLevel = ecapaEngine.classifyStress(stressEmbeddings) // 5. Generate wellness recommendations val recommendations = wellnessEngine.generateRecommendations( stressLevel = stressLevel, context = context, historicalData = localRepository.getRecentAssessments() ) // 6. Store results locally (encrypted) val result = StressAnalysisResult( level = stressLevel.level, confidence = stressLevel.confidence, embeddings = stressEmbeddings, recommendations = recommendations, timestamp = System.currentTimeMillis(), processingTimeMs = measureProcessingTime() ) localRepository.saveStressAssessment(result) return@withContext result } private fun measureProcessingTime(): Long { // Track performance metrics for NPU optimization return System.currentTimeMillis() - analysisStartTime } }

Audio Processing Pipeline

@Singleton class AudioProcessingPipeline @Inject constructor( private val bufferPool: AudioBufferPool, private val featureExtractor: AudioFeatureExtractor ) { private val audioFormat = AudioFormat.Builder() .setEncoding(AudioFormat.ENCODING_PCM_16BIT) .setSampleRate(16000) // Optimized for ECAPA-TDNN .setChannelMask(AudioFormat.CHANNEL_IN_MONO) .build() fun preprocessAudio(rawAudioData: ByteArray): FloatArray { val buffer = bufferPool.acquire() ?: FloatArray(16000) // 1 second at 16kHz try { // Convert byte array to float array val audioSamples = convertBytesToFloat(rawAudioData) // Apply audio preprocessing val processedAudio = applyPreprocessing(audioSamples) return processedAudio } finally { bufferPool.release(buffer) } } suspend fun extractMFCCFeatures(audioData: FloatArray): FloatArray = withContext(Dispatchers.Default) { featureExtractor.extractMFCC( audioData = audioData, sampleRate = 16000, numMFCC = 39, // Optimized for ECAPA-TDNN frameLength = 400, // 25ms frames hopLength = 160 // 10ms hop ) } private fun applyPreprocessing(audio: FloatArray): FloatArray { return audio .let { removeNoiseProfile(it) } .let { normalizeAudio(it) } .let { applyHighPassFilter(it) } } }

Layer 3: AI/ML Processing Layer

ECAPA-TDNN Engine (Primary)

@Singleton class ECAPAStressEngine @Inject constructor( private val npuDelegate: NPUDelegate, private val modelCache: ModelCache, private val performanceMonitor: PerformanceMonitor ) { private var ecapaInterpreter: Interpreter? = null private var stressClassifier: Interpreter? = null suspend fun initialize() = withContext(Dispatchers.IO) { try { // Load SpeechBrain ECAPA-TDNN model val ecapaModel = modelCache.loadModel("speechbrain-ecapa-voxceleb.tflite") val classifierModel = modelCache.loadModel("stress-classifier.tflite") // Initialize with NPU delegation val options = Interpreter.Options().apply { if (npuDelegate.isNPUAvailable()) { addDelegate(npuDelegate.createDelegate()) setNumThreads(1) // NPU handles parallelism } else { setNumThreads(4) // Fallback to CPU setUseXNNPACK(true) // CPU optimization } } ecapaInterpreter = Interpreter(ecapaModel, options) stressClassifier = Interpreter(classifierModel, options) Log.i("ECAPA", "Initialized with ${if (npuDelegate.isNPUAvailable()) "NPU" else "CPU"}") } catch (e: Exception) { Log.e("ECAPA", "Initialization failed", e) initializeFallback() } } suspend fun extractStressEmbeddings(mfccFeatures: FloatArray): FloatArray = withContext(Dispatchers.Default) { performanceMonitor.startTiming("ecapa_embedding_extraction") try { // Prepare input tensor val inputBuffer = ByteBuffer.allocateDirect(mfccFeatures.size * 4) .order(ByteOrder.nativeOrder()) .asFloatBuffer() .put(mfccFeatures) // Prepare output tensor (192-dimensional ECAPA embeddings) val outputBuffer = ByteBuffer.allocateDirect(192 * 4) .order(ByteOrder.nativeOrder()) // Run ECAPA-TDNN inference ecapaInterpreter?.run(inputBuffer, outputBuffer) // Extract embeddings val embeddings = FloatArray(192) outputBuffer.rewind() outputBuffer.asFloatBuffer().get(embeddings) performanceMonitor.endTiming("ecapa_embedding_extraction") return@withContext embeddings } catch (e: Exception) { Log.e("ECAPA", "Embedding extraction failed", e) throw StressAnalysisException("ECAPA embedding extraction failed", e) } } suspend fun classifyStress(embeddings: FloatArray): StressClassification = withContext(Dispatchers.Default) { performanceMonitor.startTiming("stress_classification") try { // Prepare input (ECAPA embeddings) val inputBuffer = ByteBuffer.allocateDirect(embeddings.size * 4) .order(ByteOrder.nativeOrder()) .asFloatBuffer() .put(embeddings) // Prepare output (10 stress levels) val outputBuffer = ByteBuffer.allocateDirect(10 * 4) .order(ByteOrder.nativeOrder()) // Run stress classification stressClassifier?.run(inputBuffer, outputBuffer) // Parse results val probabilities = FloatArray(10) outputBuffer.rewind() outputBuffer.asFloatBuffer().get(probabilities) val predictedLevel = probabilities.indices.maxByOrNull { probabilities[it] }?.plus(1) ?: 1 val confidence = probabilities.maxOrNull() ?: 0f performanceMonitor.endTiming("stress_classification") return@withContext StressClassification( level = predictedLevel, confidence = confidence, probabilities = probabilities ) } catch (e: Exception) { Log.e("ECAPA", "Stress classification failed", e) throw StressAnalysisException("Stress classification failed", e) } } }

NPU Hardware Abstraction Layer

@Singleton class NPUDelegate @Inject constructor( private val deviceInfoProvider: DeviceInfoProvider ) { private var npuType: NPUType = NPUType.NONE private var delegate: Delegate? = null enum class NPUType { QUALCOMM_HEXAGON, MEDIATEK_APU, SAMSUNG_NPU, GOOGLE_TENSOR, NONE } fun initialize() { npuType = detectNPUType() delegate = createNPUDelegate() } private fun detectNPUType(): NPUType { val deviceModel = Build.MODEL.lowercase() val chipset = deviceInfoProvider.getChipsetInfo() return when { chipset.contains("snapdragon", ignoreCase = true) -> { Log.i("NPU", "Detected Qualcomm Snapdragon NPU") NPUType.QUALCOMM_HEXAGON } chipset.contains("dimensity", ignoreCase = true) -> { Log.i("NPU", "Detected MediaTek APU") NPUType.MEDIATEK_APU } chipset.contains("exynos", ignoreCase = true) -> { Log.i("NPU", "Detected Samsung NPU") NPUType.SAMSUNG_NPU } chipset.contains("tensor", ignoreCase = true) -> { Log.i("NPU", "Detected Google Tensor TPU") NPUType.GOOGLE_TENSOR } else -> { Log.i("NPU", "No NPU detected, using CPU/GPU fallback") NPUType.NONE } } } fun createDelegate(): Delegate? { return when (npuType) { NPUType.QUALCOMM_HEXAGON -> { try { // Qualcomm AI Engine Direct delegate val options = QnnDelegate.Options().apply { setBackendType(QnnDelegate.Options.BackendType.HTP_BACKEND) setPerformanceMode(QnnDelegate.Options.PerformanceMode.HIGH_PERFORMANCE) setPrecisionMode(QnnDelegate.Options.PrecisionMode.FP16) } QnnDelegate(options) } catch (e: Exception) { Log.w("NPU", "Qualcomm NPU delegate creation failed", e) createGPUFallback() } } NPUType.MEDIATEK_APU -> { try { // MediaTek NeuroPilot delegate (when available) NeuronDelegate(NeuronDelegate.Options()) } catch (e: Exception) { Log.w("NPU", "MediaTek NPU delegate creation failed", e) createGPUFallback() } } else -> createGPUFallback() } } private fun createGPUFallback(): Delegate { return GpuDelegate(GpuDelegate.Options().apply { setInferencePreference(GpuDelegate.Options.INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER) setPrecisionLossAllowed(true) // Allow FP16 for performance }) } fun isNPUAvailable(): Boolean = npuType != NPUType.NONE && delegate != null fun getPerformanceInfo(): NPUPerformanceInfo { return NPUPerformanceInfo( npuType = npuType, isAvailable = isNPUAvailable(), estimatedTOPS = getEstimatedTOPS(), supportedPrecision = getSupportedPrecision() ) } }

Layer 4: Data Layer

Encrypted Local Storage

@Singleton class LocalStressRepository @Inject constructor( private val database: StressLessDatabase, private val encryptionManager: EncryptionManager, private val privacyController: PrivacyController ) { suspend fun saveStressAssessment(assessment: StressAnalysisResult) = withContext(Dispatchers.IO) { // Encrypt sensitive data before storage val encryptedEmbeddings = encryptionManager.encrypt( assessment.embeddings.joinToString(",") ) val encryptedRecommendations = encryptionManager.encrypt( assessment.recommendations.joinToString("|") ) val entity = StressAssessmentEntity( id = generateUUID(), stressLevel = assessment.level, confidence = assessment.confidence, encryptedEmbeddings = encryptedEmbeddings, encryptedRecommendations = encryptedRecommendations, timestamp = assessment.timestamp, processingTimeMs = assessment.processingTimeMs, synced = false ) database.stressAssessmentDao().insertAssessment(entity) // Update privacy audit log privacyController.logDataProcessing( operation = "STRESS_ASSESSMENT_STORED", dataType = "VOICE_ANALYSIS_RESULT", processingBasis = "LEGITIMATE_INTEREST" ) } suspend fun getStressHistory( startDate: Long, endDate: Long ): List<StressAnalysisResult> = withContext(Dispatchers.IO) { val entities = database.stressAssessmentDao() .getAssessmentsByDateRange(startDate, endDate) entities.map { entity -> val embeddings = encryptionManager.decrypt(entity.encryptedEmbeddings) .split(",") .map { it.toFloat() } .toFloatArray() val recommendations = encryptionManager.decrypt(entity.encryptedRecommendations) .split("|") StressAnalysisResult( level = entity.stressLevel, confidence = entity.confidence, embeddings = embeddings, recommendations = recommendations, timestamp = entity.timestamp, processingTimeMs = entity.processingTimeMs ) } } suspend fun exportAllData(): String = withContext(Dispatchers.IO) { // GDPR Article 15 - Right of access val allAssessments = database.stressAssessmentDao().getAllAssessments() val exportData = PersonalDataExport( assessments = allAssessments, privacyLog = privacyController.getPrivacyAuditLog(), consentHistory = privacyController.getConsentHistory(), exportTimestamp = System.currentTimeMillis() ) Json.encodeToString(exportData) } suspend fun deleteAllData() = withContext(Dispatchers.IO) { // GDPR Article 17 - Right to erasure database.clearAllTables() encryptionManager.destroyAllKeys() privacyController.logDataDeletion("USER_REQUESTED_DELETION") } }

Model Management System

@Singleton class ModelCache @Inject constructor( private val context: Context, private val encryptionManager: EncryptionManager ) { private val modelCache = mutableMapOf<String, ByteBuffer>() suspend fun loadModel(modelName: String): ByteBuffer = withContext(Dispatchers.IO) { // Check cache first modelCache[modelName]?.let { return@withContext it } // Load from assets val modelBuffer = when (modelName) { "speechbrain-ecapa-voxceleb.tflite" -> { loadAssetModel("models/speechbrain_ecapa_voxceleb_quantized.tflite") } "stress-classifier.tflite" -> { loadAssetModel("models/stress_classifier_quantized.tflite") } "gemma-3n-e2b.tflite" -> { loadAssetModel("models/gemma_3n_e2b_quantized.tflite") } else -> throw IllegalArgumentException("Unknown model: $modelName") } // Cache model for future use modelCache[modelName] = modelBuffer Log.i("ModelCache", "Loaded model: $modelName (${modelBuffer.capacity()} bytes)") return@withContext modelBuffer } private fun loadAssetModel(assetPath: String): ByteBuffer { context.assets.open(assetPath).use { inputStream -> val modelBytes = inputStream.readBytes() // Verify model integrity val checksum = calculateMD5(modelBytes) verifyModelChecksum(assetPath, checksum) return ByteBuffer.allocateDirect(modelBytes.size).apply { put(modelBytes) rewind() } } } fun preloadModels() { // Background preloading of critical models GlobalScope.launch(Dispatchers.IO) { try { loadModel("speechbrain-ecapa-voxceleb.tflite") loadModel("stress-classifier.tflite") Log.i("ModelCache", "Critical models preloaded successfully") } catch (e: Exception) { Log.e("ModelCache", "Model preloading failed", e) } } } }

Dependency Injection Setup (Hilt)

Application Module

@Module @InstallIn(SingletonComponent::class) object StressLessAppModule { @Provides @Singleton fun provideStressLessDatabase(@ApplicationContext context: Context): StressLessDatabase { // SQLCipher encrypted database val passphrase = SQLiteDatabase.getBytes("secure_passphrase".toCharArray()) return Room.databaseBuilder( context, StressLessDatabase::class.java, "stressless_encrypted.db" ) .openHelperFactory(SupportFactory(passphrase)) .fallbackToDestructiveMigration() .build() } @Provides @Singleton fun provideECAPAStressEngine( npuDelegate: NPUDelegate, modelCache: ModelCache, performanceMonitor: PerformanceMonitor ): ECAPAStressEngine { return ECAPAStressEngine(npuDelegate, modelCache, performanceMonitor) } @Provides @Singleton fun provideNPUDelegate(deviceInfoProvider: DeviceInfoProvider): NPUDelegate { return NPUDelegate(deviceInfoProvider).apply { initialize() } } @Provides @Singleton fun provideAudioProcessingPipeline( bufferPool: AudioBufferPool, featureExtractor: AudioFeatureExtractor ): AudioProcessingPipeline { return AudioProcessingPipeline(bufferPool, featureExtractor) } }

Performance Optimization Strategies

Memory Management

@Singleton class AudioBufferPool @Inject constructor() { private val pool = object : Pools.SynchronizedPool<FloatArray>(10) { override fun create(): FloatArray = FloatArray(16000) // 1 second at 16kHz } fun acquire(): FloatArray? = pool.acquire() fun release(buffer: FloatArray) { // Clear buffer for security buffer.fill(0f) pool.release(buffer) } fun getPoolStatus(): PoolStatus { return PoolStatus( totalCapacity = 10, availableBuffers = pool.size, bufferSize = 16000 ) } }

Battery Optimization

@Singleton class PowerOptimizedAnalyzer @Inject constructor( private val powerManager: PowerManager, private val batteryManager: BatteryManager ) { fun shouldPerformAnalysis(): Boolean { val batteryLevel = batteryManager.getIntProperty(BatteryManager.BATTERY_PROPERTY_CAPACITY) val isPowerSaveMode = powerManager.isPowerSaveMode return when { batteryLevel < 10 -> false // Critical battery isPowerSaveMode -> false // Power save mode batteryLevel < 25 -> useReducedProcessing() // Limited processing else -> true // Full analysis } } private fun useReducedProcessing(): Boolean { // Use CPU-only processing instead of NPU to save power return true } }

Privacy and Security Implementation

GDPR Compliance Controller

@Singleton class PrivacyController @Inject constructor( private val encryptionManager: EncryptionManager, private val auditLogger: PrivacyAuditLogger ) { private val _consentState = MutableStateFlow(GDPRConsentState()) val consentState: StateFlow<GDPRConsentState> = _consentState.asStateFlow() fun updateConsent(consentType: ConsentType, granted: Boolean) { val currentState = _consentState.value val updatedState = when (consentType) { ConsentType.VOICE_ANALYSIS -> currentState.copy(voiceAnalysisConsent = granted) ConsentType.DATA_ANALYTICS -> currentState.copy(dataAnalyticsConsent = granted) ConsentType.AI_RECOMMENDATIONS -> currentState.copy(aiRecommendationsConsent = granted) ConsentType.RESEARCH_PARTICIPATION -> currentState.copy(researchParticipation = granted) } _consentState.value = updatedState // Log consent change for audit auditLogger.logConsentChange( consentType = consentType, granted = granted, timestamp = System.currentTimeMillis(), ipAddress = getCurrentIPAddress() ) } fun validateAnalysisPermissions(context: StressAnalysisContext) { val consent = _consentState.value if (!consent.voiceAnalysisConsent) { throw PrivacyException("Voice analysis consent not granted") } if (context.requiresDataSharing && !consent.dataAnalyticsConsent) { throw PrivacyException("Data analytics consent required for this operation") } } suspend fun processDataSubjectRequest(request: DataSubjectRequest): DataSubjectResponse { return when (request.type) { DataSubjectRequestType.ACCESS -> { // Article 15 - Right of access val personalData = collectPersonalData(request.userId) DataSubjectResponse.AccessResponse(personalData) } DataSubjectRequestType.RECTIFICATION -> { // Article 16 - Right to rectification rectifyPersonalData(request.userId, request.corrections) DataSubjectResponse.RectificationResponse() } DataSubjectRequestType.ERASURE -> { // Article 17 - Right to erasure erasePersonalData(request.userId) DataSubjectResponse.ErasureResponse() } DataSubjectRequestType.PORTABILITY -> { // Article 20 - Right to data portability val portableData = exportPortableData(request.userId) DataSubjectResponse.PortabilityResponse(portableData) } } } }

Testing Strategy

Unit Testing

@RunWith(JUnit4::class) class ECAPAStressEngineTest { @Mock private lateinit var npuDelegate: NPUDelegate @Mock private lateinit var modelCache: ModelCache @Mock private lateinit var performanceMonitor: PerformanceMonitor private lateinit var ecapaEngine: ECAPAStressEngine @Before fun setup() { MockitoAnnotations.openMocks(this) ecapaEngine = ECAPAStressEngine(npuDelegate, modelCache, performanceMonitor) } @Test fun `extract stress embeddings returns correct dimensions`() = runTest { // Given val mfccFeatures = FloatArray(39 * 100) { Random.nextFloat() } // 100 frames, 39 MFCC `when`(npuDelegate.isNPUAvailable()).thenReturn(true) // When val embeddings = ecapaEngine.extractStressEmbeddings(mfccFeatures) // Then assertEquals(192, embeddings.size) // ECAPA-TDNN embedding dimension assertTrue(embeddings.all { !it.isNaN() }) } @Test fun `classify stress returns valid stress level`() = runTest { // Given val embeddings = FloatArray(192) { Random.nextFloat() } // When val classification = ecapaEngine.classifyStress(embeddings) // Then assertTrue(classification.level in 1..10) assertTrue(classification.confidence in 0f..1f) } }

Integration Testing

@RunWith(AndroidJUnit4::class) @HiltAndroidTest class StressAnalysisIntegrationTest { @get:Rule var hiltRule = HiltAndroidRule(this) @Inject lateinit var stressAnalysisManager: StressAnalysisManager @Before fun setup() { hiltRule.inject() } @Test fun `end to end stress analysis completes successfully`() = runTest { // Given val testAudioData = loadTestAudioFile("test_stressed_voice.wav") val context = StressAnalysisContext( userId = "test_user", sessionId = "test_session", environmentContext = "office" ) // When val result = stressAnalysisManager.performStressAnalysis(testAudioData, context) // Then assertNotNull(result) assertTrue(result.level in 1..10) assertTrue(result.confidence > 0.5f) assertTrue(result.processingTimeMs < 3000) // Under 3 seconds assertNotNull(result.recommendations) assertTrue(result.recommendations.isNotEmpty()) } }

Deployment and Distribution

Build Configuration

// app/build.gradle.kts android { compileSdk 34 defaultConfig { applicationId = "com.stressless.android" minSdk = 26 // Android 8.0 (required for NNAPI) targetSdk = 34 testInstrumentationRunner = "com.stressless.HiltTestRunner" } buildTypes { release { isMinifyEnabled = true isShrinkResources = true proguardFiles( getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro" ) } } packaging { resources { excludes.addAll(listOf( "META-INF/DEPENDENCIES", "META-INF/LICENSE", "META-INF/LICENSE.txt", "META-INF/NOTICE", "META-INF/NOTICE.txt" )) } } } dependencies { // Core Android implementation("androidx.core:core-ktx:1.12.0") implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.7.0") // Jetpack Compose implementation("androidx.activity:activity-compose:1.8.2") implementation("androidx.compose.ui:ui:$composeVersion") implementation("androidx.compose.material3:material3:1.1.2") // LiteRT (formerly TensorFlow Lite) implementation("com.google.ai.edge.litert:litert:1.0.1") implementation("com.google.ai.edge.litert:litert-gpu:1.0.1") implementation("com.google.ai.edge.litert:litert-support:1.0.1") // Qualcomm NPU support implementation("com.qualcomm.qti:qnn-litert-delegate:2.34.0") // Database and encryption implementation("androidx.room:room-runtime:2.6.1") implementation("androidx.room:room-ktx:2.6.1") implementation("net.zetetic:android-database-sqlcipher:4.5.4") // Dependency injection implementation("com.google.dagger:hilt-android:2.48.1") kapt("com.google.dagger:hilt-compiler:2.48.1") // Audio processing implementation("be.tarsos.dsp:core:2.4") implementation("be.tarsos.dsp:jvm:2.4") // Privacy and security implementation("androidx.security:security-crypto:1.1.0-alpha06") // Background work implementation("androidx.work:work-runtime-ktx:2.9.0") // Testing testImplementation("junit:junit:4.13.2") testImplementation("org.mockito:mockito-core:5.5.0") testImplementation("org.jetbrains.kotlinx:kotlinx-coroutines-test:1.7.3") androidTestImplementation("androidx.test.ext:junit:1.1.5") androidTestImplementation("androidx.compose.ui:ui-test-junit4:$composeVersion") androidTestImplementation("com.google.dagger:hilt-android-testing:2.48.1") }

Performance Benchmarks and Targets

Performance Requirements

Metric

Target

Measurement Method

Voice Analysis Time

<3 seconds

End-to-end processing time

NPU Initialization

<500ms

Model loading and setup

Memory Usage

<200MB

Peak RAM during analysis

Battery Impact

<2% per analysis

Power consumption measurement

Storage Efficiency

<50MB app size

APK size optimization

NPU Performance Matrix

Chipset

Expected Performance

Fallback Strategy

Snapdragon 8 Elite

<1 second analysis

GPU → CPU

Snapdragon 8 Gen 3

<1.5 seconds

GPU → CPU

MediaTek Dimensity 9400

<2 seconds

GPU → CPU

Exynos 2400

<2.5 seconds

GPU → CPU

CPU Only

<5 seconds

Optimized CPU processing

Conclusion

This architecture provides a robust, scalable, and privacy-first foundation for the StressLess Android application using SpeechBrain ECAPA-TDNN as the primary voice analysis engine. The design emphasizes:

  1. NPU-First Performance: Optimal hardware utilization for sub-3-second analysis

  2. Privacy by Design: Complete local processing with GDPR compliance

  3. Commercial Viability: Apache 2.0 and MIT licensed components throughout

  4. Production Readiness: Comprehensive testing, monitoring, and deployment strategies

  5. Scalable Architecture: Clean separation of concerns enabling future enhancements

The implementation leverages modern Android development practices (Jetpack Compose, Hilt, Room) while maintaining enterprise-grade security and clinical-level accuracy for workplace stress monitoring applications.

21 September 2025