StressLess Android Application Architecture Using SpeechBrain ECAPA-TDNN as Primary Engine Executive Summary This document presents a comprehensive Android application architecture for StressLess, leveraging SpeechBrain ECAPA-TDNN as the primary voice analysis engine. The architecture emphasizes NPU acceleration , offline-first operation , and privacy-by-design principles while delivering sub-3-second stress analysis performance.
Core Architecture Overview High-Level System Design StressLess Android Application Architecture Presentation Layer Business Logic Layer AI/ML Processing Layer Data Layer System Integration Voice Recording UI (Jetpack Compose) Stress Dashboard (Real-time Charts) Settings & Privacy (GDPR Controls) Wellness Coach Chat (AI Assistant) Stress Analysis Manager (Orchestrator) Audio Processing Pipeline (Real-time) Privacy Controller (GDPR Compliance) Wellness Recommendation Engine ECAPA-TDNN Engine (Primary) LiteRT NPU Delegate (Qualcomm/MediaTek) Gemma-3n Insights (Secondary) Encrypted SQLite (SQLCipher) Secure Key Storage (Android Keystore) Audio Buffer Pool (Memory Management) Model Cache (LiteRT Models) NPU Hardware Abstraction (HAL) Audio System Interface (OpenSL ES) Background Processing (WorkManager) Network Sync Service (Optional) Start/Stop Recording Get Stress Data Privacy Controls AI Recommendations Process Audio NPU Acceleration Generate Insights Load Models Load LLM Store Results Encryption Keys Hardware Access Audio Capture Sync Tasks Cloud Sync Layer 1: Presentation Layer (Jetpack Compose) Core UI Components 1. Voice Recording Interface
@Composable
fun VoiceRecordingScreen(
viewModel: StressAnalysisViewModel = hiltViewModel()
) {
val uiState by viewModel.uiState.collectAsState()
val context = LocalContext.current
Column(
modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally
) {
// Real-time voice visualization
VoiceVisualizationCard(
isRecording = uiState.isRecording,
audioLevel = uiState.currentAudioLevel,
modifier = Modifier
.fillMaxWidth()
.height(200.dp)
.padding(16.dp)
)
// NPU status indicator
NPUStatusIndicator(
isNPUAvailable = uiState.isNPUAvailable,
processingMode = uiState.processingMode
)
// Recording controls
RecordingControlButton(
isRecording = uiState.isRecording,
onClick = {
if (uiState.isRecording) {
viewModel.stopRecording()
} else {
viewModel.startRecording()
}
},
modifier = Modifier
.size(120.dp)
.padding(24.dp)
)
// Analysis progress
if (uiState.isAnalyzing) {
StressAnalysisProgress(
progress = uiState.analysisProgress,
estimatedTimeRemaining = uiState.estimatedTime
)
}
// Results display
uiState.stressResult?.let { result ->
StressResultCard(
stressLevel = result.level,
confidence = result.confidence,
recommendations = result.recommendations,
processingTime = result.processingTimeMs
)
}
}
}
2. Real-time Stress Dashboard
@Composable
fun StressDashboard(
viewModel: DashboardViewModel = hiltViewModel()
) {
val stressData by viewModel.stressData.collectAsState()
val insights by viewModel.aiInsights.collectAsState()
LazyColumn {
item {
// Current stress status
CurrentStressCard(
currentLevel = stressData.currentStressLevel,
trend = stressData.trend,
lastAssessment = stressData.lastAssessmentTime
)
}
item {
// Weekly stress pattern chart
StressPatternChart(
data = stressData.weeklyPattern,
modifier = Modifier
.fillMaxWidth()
.height(200.dp)
.padding(16.dp)
)
}
item {
// AI-powered insights from Gemma-3n
if (insights.isNotEmpty()) {
AIInsightsCard(
insights = insights,
onInsightClick = viewModel::onInsightClicked
)
}
}
item {
// Privacy status indicator
PrivacyStatusCard(
dataProcessedLocally = stressData.localProcessingCount,
dataSharedCount = stressData.sharedDataCount
)
}
}
}
3. Privacy & GDPR Controls
@Composable
fun PrivacySettingsScreen(
viewModel: PrivacyViewModel = hiltViewModel()
) {
val privacyState by viewModel.privacyState.collectAsState()
Column(
modifier = Modifier
.fillMaxSize()
.padding(16.dp)
) {
// GDPR consent management
GDPRConsentSection(
consentStatus = privacyState.consentStatus,
onConsentChange = viewModel::updateConsent
)
// Data processing transparency
DataProcessingCard(
localProcessingEnabled = privacyState.localProcessingOnly,
dataRetentionDays = privacyState.dataRetentionDays,
onSettingChange = viewModel::updateDataSettings
)
// Export personal data (GDPR Article 15)
ExportDataSection(
onExportRequest = viewModel::requestDataExport,
exportStatus = privacyState.exportStatus
)
// Delete all data (GDPR Article 17)
DeleteDataSection(
onDeleteRequest = viewModel::requestDataDeletion,
deletionStatus = privacyState.deletionStatus
)
}
}
Layer 2: Business Logic Layer Stress Analysis Manager (Orchestrator)
@Singleton
class StressAnalysisManager @Inject constructor(
private val ecapaEngine: ECAPAStressEngine,
private val audioProcessor: AudioProcessingPipeline,
private val privacyController: PrivacyController,
private val wellnessEngine: WellnessRecommendationEngine,
private val localRepository: LocalStressRepository
) {
suspend fun performStressAnalysis(
audioData: ByteArray,
context: StressAnalysisContext
): StressAnalysisResult = withContext(Dispatchers.Default) {
// 1. Privacy compliance check
privacyController.validateAnalysisPermissions(context)
// 2. Audio preprocessing
val processedAudio = audioProcessor.preprocessAudio(audioData)
// 3. Feature extraction
val features = audioProcessor.extractMFCCFeatures(processedAudio)
// 4. ECAPA-TDNN stress analysis (NPU accelerated)
val stressEmbeddings = ecapaEngine.extractStressEmbeddings(features)
val stressLevel = ecapaEngine.classifyStress(stressEmbeddings)
// 5. Generate wellness recommendations
val recommendations = wellnessEngine.generateRecommendations(
stressLevel = stressLevel,
context = context,
historicalData = localRepository.getRecentAssessments()
)
// 6. Store results locally (encrypted)
val result = StressAnalysisResult(
level = stressLevel.level,
confidence = stressLevel.confidence,
embeddings = stressEmbeddings,
recommendations = recommendations,
timestamp = System.currentTimeMillis(),
processingTimeMs = measureProcessingTime()
)
localRepository.saveStressAssessment(result)
return@withContext result
}
private fun measureProcessingTime(): Long {
// Track performance metrics for NPU optimization
return System.currentTimeMillis() - analysisStartTime
}
}
Audio Processing Pipeline
@Singleton
class AudioProcessingPipeline @Inject constructor(
private val bufferPool: AudioBufferPool,
private val featureExtractor: AudioFeatureExtractor
) {
private val audioFormat = AudioFormat.Builder()
.setEncoding(AudioFormat.ENCODING_PCM_16BIT)
.setSampleRate(16000) // Optimized for ECAPA-TDNN
.setChannelMask(AudioFormat.CHANNEL_IN_MONO)
.build()
fun preprocessAudio(rawAudioData: ByteArray): FloatArray {
val buffer = bufferPool.acquire() ?: FloatArray(16000) // 1 second at 16kHz
try {
// Convert byte array to float array
val audioSamples = convertBytesToFloat(rawAudioData)
// Apply audio preprocessing
val processedAudio = applyPreprocessing(audioSamples)
return processedAudio
} finally {
bufferPool.release(buffer)
}
}
suspend fun extractMFCCFeatures(audioData: FloatArray): FloatArray =
withContext(Dispatchers.Default) {
featureExtractor.extractMFCC(
audioData = audioData,
sampleRate = 16000,
numMFCC = 39, // Optimized for ECAPA-TDNN
frameLength = 400, // 25ms frames
hopLength = 160 // 10ms hop
)
}
private fun applyPreprocessing(audio: FloatArray): FloatArray {
return audio
.let { removeNoiseProfile(it) }
.let { normalizeAudio(it) }
.let { applyHighPassFilter(it) }
}
}
Layer 3: AI/ML Processing Layer ECAPA-TDNN Engine (Primary)
@Singleton
class ECAPAStressEngine @Inject constructor(
private val npuDelegate: NPUDelegate,
private val modelCache: ModelCache,
private val performanceMonitor: PerformanceMonitor
) {
private var ecapaInterpreter: Interpreter? = null
private var stressClassifier: Interpreter? = null
suspend fun initialize() = withContext(Dispatchers.IO) {
try {
// Load SpeechBrain ECAPA-TDNN model
val ecapaModel = modelCache.loadModel("speechbrain-ecapa-voxceleb.tflite")
val classifierModel = modelCache.loadModel("stress-classifier.tflite")
// Initialize with NPU delegation
val options = Interpreter.Options().apply {
if (npuDelegate.isNPUAvailable()) {
addDelegate(npuDelegate.createDelegate())
setNumThreads(1) // NPU handles parallelism
} else {
setNumThreads(4) // Fallback to CPU
setUseXNNPACK(true) // CPU optimization
}
}
ecapaInterpreter = Interpreter(ecapaModel, options)
stressClassifier = Interpreter(classifierModel, options)
Log.i("ECAPA", "Initialized with ${if (npuDelegate.isNPUAvailable()) "NPU" else "CPU"}")
} catch (e: Exception) {
Log.e("ECAPA", "Initialization failed", e)
initializeFallback()
}
}
suspend fun extractStressEmbeddings(mfccFeatures: FloatArray): FloatArray =
withContext(Dispatchers.Default) {
performanceMonitor.startTiming("ecapa_embedding_extraction")
try {
// Prepare input tensor
val inputBuffer = ByteBuffer.allocateDirect(mfccFeatures.size * 4)
.order(ByteOrder.nativeOrder())
.asFloatBuffer()
.put(mfccFeatures)
// Prepare output tensor (192-dimensional ECAPA embeddings)
val outputBuffer = ByteBuffer.allocateDirect(192 * 4)
.order(ByteOrder.nativeOrder())
// Run ECAPA-TDNN inference
ecapaInterpreter?.run(inputBuffer, outputBuffer)
// Extract embeddings
val embeddings = FloatArray(192)
outputBuffer.rewind()
outputBuffer.asFloatBuffer().get(embeddings)
performanceMonitor.endTiming("ecapa_embedding_extraction")
return@withContext embeddings
} catch (e: Exception) {
Log.e("ECAPA", "Embedding extraction failed", e)
throw StressAnalysisException("ECAPA embedding extraction failed", e)
}
}
suspend fun classifyStress(embeddings: FloatArray): StressClassification =
withContext(Dispatchers.Default) {
performanceMonitor.startTiming("stress_classification")
try {
// Prepare input (ECAPA embeddings)
val inputBuffer = ByteBuffer.allocateDirect(embeddings.size * 4)
.order(ByteOrder.nativeOrder())
.asFloatBuffer()
.put(embeddings)
// Prepare output (10 stress levels)
val outputBuffer = ByteBuffer.allocateDirect(10 * 4)
.order(ByteOrder.nativeOrder())
// Run stress classification
stressClassifier?.run(inputBuffer, outputBuffer)
// Parse results
val probabilities = FloatArray(10)
outputBuffer.rewind()
outputBuffer.asFloatBuffer().get(probabilities)
val predictedLevel = probabilities.indices.maxByOrNull {
probabilities[it]
}?.plus(1) ?: 1
val confidence = probabilities.maxOrNull() ?: 0f
performanceMonitor.endTiming("stress_classification")
return@withContext StressClassification(
level = predictedLevel,
confidence = confidence,
probabilities = probabilities
)
} catch (e: Exception) {
Log.e("ECAPA", "Stress classification failed", e)
throw StressAnalysisException("Stress classification failed", e)
}
}
}
NPU Hardware Abstraction Layer
@Singleton
class NPUDelegate @Inject constructor(
private val deviceInfoProvider: DeviceInfoProvider
) {
private var npuType: NPUType = NPUType.NONE
private var delegate: Delegate? = null
enum class NPUType {
QUALCOMM_HEXAGON,
MEDIATEK_APU,
SAMSUNG_NPU,
GOOGLE_TENSOR,
NONE
}
fun initialize() {
npuType = detectNPUType()
delegate = createNPUDelegate()
}
private fun detectNPUType(): NPUType {
val deviceModel = Build.MODEL.lowercase()
val chipset = deviceInfoProvider.getChipsetInfo()
return when {
chipset.contains("snapdragon", ignoreCase = true) -> {
Log.i("NPU", "Detected Qualcomm Snapdragon NPU")
NPUType.QUALCOMM_HEXAGON
}
chipset.contains("dimensity", ignoreCase = true) -> {
Log.i("NPU", "Detected MediaTek APU")
NPUType.MEDIATEK_APU
}
chipset.contains("exynos", ignoreCase = true) -> {
Log.i("NPU", "Detected Samsung NPU")
NPUType.SAMSUNG_NPU
}
chipset.contains("tensor", ignoreCase = true) -> {
Log.i("NPU", "Detected Google Tensor TPU")
NPUType.GOOGLE_TENSOR
}
else -> {
Log.i("NPU", "No NPU detected, using CPU/GPU fallback")
NPUType.NONE
}
}
}
fun createDelegate(): Delegate? {
return when (npuType) {
NPUType.QUALCOMM_HEXAGON -> {
try {
// Qualcomm AI Engine Direct delegate
val options = QnnDelegate.Options().apply {
setBackendType(QnnDelegate.Options.BackendType.HTP_BACKEND)
setPerformanceMode(QnnDelegate.Options.PerformanceMode.HIGH_PERFORMANCE)
setPrecisionMode(QnnDelegate.Options.PrecisionMode.FP16)
}
QnnDelegate(options)
} catch (e: Exception) {
Log.w("NPU", "Qualcomm NPU delegate creation failed", e)
createGPUFallback()
}
}
NPUType.MEDIATEK_APU -> {
try {
// MediaTek NeuroPilot delegate (when available)
NeuronDelegate(NeuronDelegate.Options())
} catch (e: Exception) {
Log.w("NPU", "MediaTek NPU delegate creation failed", e)
createGPUFallback()
}
}
else -> createGPUFallback()
}
}
private fun createGPUFallback(): Delegate {
return GpuDelegate(GpuDelegate.Options().apply {
setInferencePreference(GpuDelegate.Options.INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER)
setPrecisionLossAllowed(true) // Allow FP16 for performance
})
}
fun isNPUAvailable(): Boolean = npuType != NPUType.NONE && delegate != null
fun getPerformanceInfo(): NPUPerformanceInfo {
return NPUPerformanceInfo(
npuType = npuType,
isAvailable = isNPUAvailable(),
estimatedTOPS = getEstimatedTOPS(),
supportedPrecision = getSupportedPrecision()
)
}
}
Layer 4: Data Layer Encrypted Local Storage
@Singleton
class LocalStressRepository @Inject constructor(
private val database: StressLessDatabase,
private val encryptionManager: EncryptionManager,
private val privacyController: PrivacyController
) {
suspend fun saveStressAssessment(assessment: StressAnalysisResult) =
withContext(Dispatchers.IO) {
// Encrypt sensitive data before storage
val encryptedEmbeddings = encryptionManager.encrypt(
assessment.embeddings.joinToString(",")
)
val encryptedRecommendations = encryptionManager.encrypt(
assessment.recommendations.joinToString("|")
)
val entity = StressAssessmentEntity(
id = generateUUID(),
stressLevel = assessment.level,
confidence = assessment.confidence,
encryptedEmbeddings = encryptedEmbeddings,
encryptedRecommendations = encryptedRecommendations,
timestamp = assessment.timestamp,
processingTimeMs = assessment.processingTimeMs,
synced = false
)
database.stressAssessmentDao().insertAssessment(entity)
// Update privacy audit log
privacyController.logDataProcessing(
operation = "STRESS_ASSESSMENT_STORED",
dataType = "VOICE_ANALYSIS_RESULT",
processingBasis = "LEGITIMATE_INTEREST"
)
}
suspend fun getStressHistory(
startDate: Long,
endDate: Long
): List<StressAnalysisResult> = withContext(Dispatchers.IO) {
val entities = database.stressAssessmentDao()
.getAssessmentsByDateRange(startDate, endDate)
entities.map { entity ->
val embeddings = encryptionManager.decrypt(entity.encryptedEmbeddings)
.split(",")
.map { it.toFloat() }
.toFloatArray()
val recommendations = encryptionManager.decrypt(entity.encryptedRecommendations)
.split("|")
StressAnalysisResult(
level = entity.stressLevel,
confidence = entity.confidence,
embeddings = embeddings,
recommendations = recommendations,
timestamp = entity.timestamp,
processingTimeMs = entity.processingTimeMs
)
}
}
suspend fun exportAllData(): String = withContext(Dispatchers.IO) {
// GDPR Article 15 - Right of access
val allAssessments = database.stressAssessmentDao().getAllAssessments()
val exportData = PersonalDataExport(
assessments = allAssessments,
privacyLog = privacyController.getPrivacyAuditLog(),
consentHistory = privacyController.getConsentHistory(),
exportTimestamp = System.currentTimeMillis()
)
Json.encodeToString(exportData)
}
suspend fun deleteAllData() = withContext(Dispatchers.IO) {
// GDPR Article 17 - Right to erasure
database.clearAllTables()
encryptionManager.destroyAllKeys()
privacyController.logDataDeletion("USER_REQUESTED_DELETION")
}
}
Model Management System
@Singleton
class ModelCache @Inject constructor(
private val context: Context,
private val encryptionManager: EncryptionManager
) {
private val modelCache = mutableMapOf<String, ByteBuffer>()
suspend fun loadModel(modelName: String): ByteBuffer = withContext(Dispatchers.IO) {
// Check cache first
modelCache[modelName]?.let { return@withContext it }
// Load from assets
val modelBuffer = when (modelName) {
"speechbrain-ecapa-voxceleb.tflite" -> {
loadAssetModel("models/speechbrain_ecapa_voxceleb_quantized.tflite")
}
"stress-classifier.tflite" -> {
loadAssetModel("models/stress_classifier_quantized.tflite")
}
"gemma-3n-e2b.tflite" -> {
loadAssetModel("models/gemma_3n_e2b_quantized.tflite")
}
else -> throw IllegalArgumentException("Unknown model: $modelName")
}
// Cache model for future use
modelCache[modelName] = modelBuffer
Log.i("ModelCache", "Loaded model: $modelName (${modelBuffer.capacity()} bytes)")
return@withContext modelBuffer
}
private fun loadAssetModel(assetPath: String): ByteBuffer {
context.assets.open(assetPath).use { inputStream ->
val modelBytes = inputStream.readBytes()
// Verify model integrity
val checksum = calculateMD5(modelBytes)
verifyModelChecksum(assetPath, checksum)
return ByteBuffer.allocateDirect(modelBytes.size).apply {
put(modelBytes)
rewind()
}
}
}
fun preloadModels() {
// Background preloading of critical models
GlobalScope.launch(Dispatchers.IO) {
try {
loadModel("speechbrain-ecapa-voxceleb.tflite")
loadModel("stress-classifier.tflite")
Log.i("ModelCache", "Critical models preloaded successfully")
} catch (e: Exception) {
Log.e("ModelCache", "Model preloading failed", e)
}
}
}
}
Dependency Injection Setup (Hilt) Application Module
@Module
@InstallIn(SingletonComponent::class)
object StressLessAppModule {
@Provides
@Singleton
fun provideStressLessDatabase(@ApplicationContext context: Context): StressLessDatabase {
// SQLCipher encrypted database
val passphrase = SQLiteDatabase.getBytes("secure_passphrase".toCharArray())
return Room.databaseBuilder(
context,
StressLessDatabase::class.java,
"stressless_encrypted.db"
)
.openHelperFactory(SupportFactory(passphrase))
.fallbackToDestructiveMigration()
.build()
}
@Provides
@Singleton
fun provideECAPAStressEngine(
npuDelegate: NPUDelegate,
modelCache: ModelCache,
performanceMonitor: PerformanceMonitor
): ECAPAStressEngine {
return ECAPAStressEngine(npuDelegate, modelCache, performanceMonitor)
}
@Provides
@Singleton
fun provideNPUDelegate(deviceInfoProvider: DeviceInfoProvider): NPUDelegate {
return NPUDelegate(deviceInfoProvider).apply { initialize() }
}
@Provides
@Singleton
fun provideAudioProcessingPipeline(
bufferPool: AudioBufferPool,
featureExtractor: AudioFeatureExtractor
): AudioProcessingPipeline {
return AudioProcessingPipeline(bufferPool, featureExtractor)
}
}
Memory Management
@Singleton
class AudioBufferPool @Inject constructor() {
private val pool = object : Pools.SynchronizedPool<FloatArray>(10) {
override fun create(): FloatArray = FloatArray(16000) // 1 second at 16kHz
}
fun acquire(): FloatArray? = pool.acquire()
fun release(buffer: FloatArray) {
// Clear buffer for security
buffer.fill(0f)
pool.release(buffer)
}
fun getPoolStatus(): PoolStatus {
return PoolStatus(
totalCapacity = 10,
availableBuffers = pool.size,
bufferSize = 16000
)
}
}
Battery Optimization
@Singleton
class PowerOptimizedAnalyzer @Inject constructor(
private val powerManager: PowerManager,
private val batteryManager: BatteryManager
) {
fun shouldPerformAnalysis(): Boolean {
val batteryLevel = batteryManager.getIntProperty(BatteryManager.BATTERY_PROPERTY_CAPACITY)
val isPowerSaveMode = powerManager.isPowerSaveMode
return when {
batteryLevel < 10 -> false // Critical battery
isPowerSaveMode -> false // Power save mode
batteryLevel < 25 -> useReducedProcessing() // Limited processing
else -> true // Full analysis
}
}
private fun useReducedProcessing(): Boolean {
// Use CPU-only processing instead of NPU to save power
return true
}
}
Privacy and Security Implementation GDPR Compliance Controller
@Singleton
class PrivacyController @Inject constructor(
private val encryptionManager: EncryptionManager,
private val auditLogger: PrivacyAuditLogger
) {
private val _consentState = MutableStateFlow(GDPRConsentState())
val consentState: StateFlow<GDPRConsentState> = _consentState.asStateFlow()
fun updateConsent(consentType: ConsentType, granted: Boolean) {
val currentState = _consentState.value
val updatedState = when (consentType) {
ConsentType.VOICE_ANALYSIS -> currentState.copy(voiceAnalysisConsent = granted)
ConsentType.DATA_ANALYTICS -> currentState.copy(dataAnalyticsConsent = granted)
ConsentType.AI_RECOMMENDATIONS -> currentState.copy(aiRecommendationsConsent = granted)
ConsentType.RESEARCH_PARTICIPATION -> currentState.copy(researchParticipation = granted)
}
_consentState.value = updatedState
// Log consent change for audit
auditLogger.logConsentChange(
consentType = consentType,
granted = granted,
timestamp = System.currentTimeMillis(),
ipAddress = getCurrentIPAddress()
)
}
fun validateAnalysisPermissions(context: StressAnalysisContext) {
val consent = _consentState.value
if (!consent.voiceAnalysisConsent) {
throw PrivacyException("Voice analysis consent not granted")
}
if (context.requiresDataSharing && !consent.dataAnalyticsConsent) {
throw PrivacyException("Data analytics consent required for this operation")
}
}
suspend fun processDataSubjectRequest(request: DataSubjectRequest): DataSubjectResponse {
return when (request.type) {
DataSubjectRequestType.ACCESS -> {
// Article 15 - Right of access
val personalData = collectPersonalData(request.userId)
DataSubjectResponse.AccessResponse(personalData)
}
DataSubjectRequestType.RECTIFICATION -> {
// Article 16 - Right to rectification
rectifyPersonalData(request.userId, request.corrections)
DataSubjectResponse.RectificationResponse()
}
DataSubjectRequestType.ERASURE -> {
// Article 17 - Right to erasure
erasePersonalData(request.userId)
DataSubjectResponse.ErasureResponse()
}
DataSubjectRequestType.PORTABILITY -> {
// Article 20 - Right to data portability
val portableData = exportPortableData(request.userId)
DataSubjectResponse.PortabilityResponse(portableData)
}
}
}
}
Testing Strategy Unit Testing
@RunWith(JUnit4::class)
class ECAPAStressEngineTest {
@Mock
private lateinit var npuDelegate: NPUDelegate
@Mock
private lateinit var modelCache: ModelCache
@Mock
private lateinit var performanceMonitor: PerformanceMonitor
private lateinit var ecapaEngine: ECAPAStressEngine
@Before
fun setup() {
MockitoAnnotations.openMocks(this)
ecapaEngine = ECAPAStressEngine(npuDelegate, modelCache, performanceMonitor)
}
@Test
fun `extract stress embeddings returns correct dimensions`() = runTest {
// Given
val mfccFeatures = FloatArray(39 * 100) { Random.nextFloat() } // 100 frames, 39 MFCC
`when`(npuDelegate.isNPUAvailable()).thenReturn(true)
// When
val embeddings = ecapaEngine.extractStressEmbeddings(mfccFeatures)
// Then
assertEquals(192, embeddings.size) // ECAPA-TDNN embedding dimension
assertTrue(embeddings.all { !it.isNaN() })
}
@Test
fun `classify stress returns valid stress level`() = runTest {
// Given
val embeddings = FloatArray(192) { Random.nextFloat() }
// When
val classification = ecapaEngine.classifyStress(embeddings)
// Then
assertTrue(classification.level in 1..10)
assertTrue(classification.confidence in 0f..1f)
}
}
Integration Testing
@RunWith(AndroidJUnit4::class)
@HiltAndroidTest
class StressAnalysisIntegrationTest {
@get:Rule
var hiltRule = HiltAndroidRule(this)
@Inject
lateinit var stressAnalysisManager: StressAnalysisManager
@Before
fun setup() {
hiltRule.inject()
}
@Test
fun `end to end stress analysis completes successfully`() = runTest {
// Given
val testAudioData = loadTestAudioFile("test_stressed_voice.wav")
val context = StressAnalysisContext(
userId = "test_user",
sessionId = "test_session",
environmentContext = "office"
)
// When
val result = stressAnalysisManager.performStressAnalysis(testAudioData, context)
// Then
assertNotNull(result)
assertTrue(result.level in 1..10)
assertTrue(result.confidence > 0.5f)
assertTrue(result.processingTimeMs < 3000) // Under 3 seconds
assertNotNull(result.recommendations)
assertTrue(result.recommendations.isNotEmpty())
}
}
Deployment and Distribution Build Configuration
// app/build.gradle.kts
android {
compileSdk 34
defaultConfig {
applicationId = "com.stressless.android"
minSdk = 26 // Android 8.0 (required for NNAPI)
targetSdk = 34
testInstrumentationRunner = "com.stressless.HiltTestRunner"
}
buildTypes {
release {
isMinifyEnabled = true
isShrinkResources = true
proguardFiles(
getDefaultProguardFile("proguard-android-optimize.txt"),
"proguard-rules.pro"
)
}
}
packaging {
resources {
excludes.addAll(listOf(
"META-INF/DEPENDENCIES",
"META-INF/LICENSE",
"META-INF/LICENSE.txt",
"META-INF/NOTICE",
"META-INF/NOTICE.txt"
))
}
}
}
dependencies {
// Core Android
implementation("androidx.core:core-ktx:1.12.0")
implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.7.0")
// Jetpack Compose
implementation("androidx.activity:activity-compose:1.8.2")
implementation("androidx.compose.ui:ui:$composeVersion")
implementation("androidx.compose.material3:material3:1.1.2")
// LiteRT (formerly TensorFlow Lite)
implementation("com.google.ai.edge.litert:litert:1.0.1")
implementation("com.google.ai.edge.litert:litert-gpu:1.0.1")
implementation("com.google.ai.edge.litert:litert-support:1.0.1")
// Qualcomm NPU support
implementation("com.qualcomm.qti:qnn-litert-delegate:2.34.0")
// Database and encryption
implementation("androidx.room:room-runtime:2.6.1")
implementation("androidx.room:room-ktx:2.6.1")
implementation("net.zetetic:android-database-sqlcipher:4.5.4")
// Dependency injection
implementation("com.google.dagger:hilt-android:2.48.1")
kapt("com.google.dagger:hilt-compiler:2.48.1")
// Audio processing
implementation("be.tarsos.dsp:core:2.4")
implementation("be.tarsos.dsp:jvm:2.4")
// Privacy and security
implementation("androidx.security:security-crypto:1.1.0-alpha06")
// Background work
implementation("androidx.work:work-runtime-ktx:2.9.0")
// Testing
testImplementation("junit:junit:4.13.2")
testImplementation("org.mockito:mockito-core:5.5.0")
testImplementation("org.jetbrains.kotlinx:kotlinx-coroutines-test:1.7.3")
androidTestImplementation("androidx.test.ext:junit:1.1.5")
androidTestImplementation("androidx.compose.ui:ui-test-junit4:$composeVersion")
androidTestImplementation("com.google.dagger:hilt-android-testing:2.48.1")
}
Metric
Target
Measurement Method
Voice Analysis Time
<3 seconds
End-to-end processing time
NPU Initialization
<500ms
Model loading and setup
Memory Usage
<200MB
Peak RAM during analysis
Battery Impact
<2% per analysis
Power consumption measurement
Storage Efficiency
<50MB app size
APK size optimization
Chipset
Expected Performance
Fallback Strategy
Snapdragon 8 Elite
<1 second analysis
GPU → CPU
Snapdragon 8 Gen 3
<1.5 seconds
GPU → CPU
MediaTek Dimensity 9400
<2 seconds
GPU → CPU
Exynos 2400
<2.5 seconds
GPU → CPU
CPU Only
<5 seconds
Optimized CPU processing
Conclusion This architecture provides a robust, scalable, and privacy-first foundation for the StressLess Android application using SpeechBrain ECAPA-TDNN as the primary voice analysis engine. The design emphasizes:
NPU-First Performance : Optimal hardware utilization for sub-3-second analysis
Privacy by Design : Complete local processing with GDPR compliance
Commercial Viability : Apache 2.0 and MIT licensed components throughout
Production Readiness : Comprehensive testing, monitoring, and deployment strategies
Scalable Architecture : Clean separation of concerns enabling future enhancements
The implementation leverages modern Android development practices (Jetpack Compose, Hilt, Room) while maintaining enterprise-grade security and clinical-level accuracy for workplace stress monitoring applications.
21 September 2025